Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311034

RESUMO

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Assuntos
Mamíferos , Polifosfatos , Animais , Especificidade por Substrato , Fosforilação , Domínio Catalítico , Dimerização
2.
Semin Cancer Biol ; 48: 1-17, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28591657

RESUMO

The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation. In the present review, we update the knowledge of the mechanisms of regulation of different AGC kinases. The conformation of the catalytic domain of many AGC kinases is regulated allosterically through the modulation of the conformation of a regulatory site on the small lobe of the kinase domain, the PIF-pocket. The PIF-pocket acts like an ON-OFF switch in AGC kinases with different modes of regulation, i.e. PDK1, PKB/Akt, LATS and Aurora kinases. In this review, we make emphasis on how the knowledge of the molecular mechanisms of regulation can guide the discovery and development of small allosteric modulators. Molecular probes stabilizing the PIF-pocket in the active conformation are activators, while compounds stabilizing the disrupted site are allosteric inhibitors. One challenge for the rational development of allosteric modulators is the lack of complete structural information of the inhibited forms of full-length AGC kinases. On the other hand, we suggest that the available information derived from molecular biology and biochemical studies can already guide screening strategies for the identification of innovative mode of action molecular probes and the development of selective allosteric drugs for the treatment of human diseases.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Descoberta de Drogas , Humanos , Fosforilação , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Quinases Associadas a rho/metabolismo
3.
Biochem Pharmacol ; 146: 53-62, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29031818

RESUMO

The transcriptional regulator FUSE Binding Protein 1 (FUBP1) is overexpressed in more than 80% of all human hepatocellular carcinomas (HCCs) and other solid tumor entities including prostate and colorectal carcinoma. FUBP1 expression is required for HCC tumor cell expansion, and it functions as an important pro-proliferative and anti-apoptotic oncoprotein that binds to the single-stranded DNA sequence FUSE to regulate the transcription of a variety of target genes. In this study, we screened an FDA-approved drug library and discovered that the Topoisomerase I (TOP1) inhibitor camptothecin (CPT) and its derivative 7-ethyl-10-hydroxycamptothecin (SN-38), the active irinotecan metabolite that is used in the clinics in combination with other chemotherapeutics to treat carcinoma, inhibit FUBP1 activity. Both molecules prevent in vitro the binding of FUBP1 to its single-stranded target DNA FUSE, and they induce deregulation of FUBP1 target genes in HCC cells. Our results suggest the interference with the FUBP1/FUSE interaction as a further molecular mechanism that, in addition to the inactivation of TOP1, may contribute to the therapeutic potential of CPT/SN-38. Targeting of FUBP1 in HCC therapy with SN-38/irinotecan could be a particularly interesting option because of the high FUBP1 levels in HCC cells and their dependency on FUBP1 expression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Antineoplásicos Fitogênicos/metabolismo , Camptotecina/metabolismo , Linhagem Celular Tumoral , DNA/química , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Irinotecano , Ligação Proteica , Proteínas de Ligação a RNA
4.
ACS Chem Biol ; 12(2): 564-573, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28045490

RESUMO

There is a current and pressing need for improved cancer therapies. The use of small molecule kinase inhibitors and their application in combinatorial regimens represent an approach to personalized targeted cancer therapy. A number of AGC kinases, including atypical Protein Kinase C enzymes (PKCs), are validated drug targets for cancer treatment. Most drug development programs for protein kinases focus on the development of drugs that bind at the ATP-binding site. Alternatively, allosteric drugs have great potential for the development of future innovative drugs. However, the rational development of allosteric drugs poses important challenges because the compounds not only must bind to a given site but also must stabilize forms of the protein with a desired effect at a distant site. Here we describe the development of a new class of compounds targeting a regulatory site (PIF-pocket) present in the kinase domain and provide biochemical and crystallographic data showing that these compounds allosterically inhibit the activity of atypical PKCs. PS432, a representative compound, decreased the rate of proliferation of non-small cell lung cancer cells more potently than aurothiomalate, an atypical PKCι inhibitor currently under evaluation in clinical trials, and significantly reduced tumor growth without side effects in a mouse xenograft model. The druglike chemical class provides ample possibilities for the synthesis of derivative compounds, with the potential to allosterically modulate the activity of atypical PKCs and other kinases.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Regulação Alostérica , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus
5.
Cell Chem Biol ; 23(10): 1193-1205, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27693059

RESUMO

Allostery is a phenomenon observed in many proteins where binding of a macromolecular partner or a small-molecule ligand at one location leads to specific perturbations at a site not in direct contact with the region where the binding occurs. The list of proteins under allosteric regulation includes AGC protein kinases. AGC kinases have a conserved allosteric site, the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF) pocket, which regulates protein ATP-binding, activity, and interaction with substrates. In this study, we identify small molecules that bind to the ATP-binding site and affect the PIF pocket of AGC kinase family members, PDK1 and Aurora kinase. We describe the mechanistic details and show that although PDK1 and Aurora kinase inhibitors bind to the conserved ATP-binding site, they differentially modulate physiological interactions at the PIF-pocket site. Our work outlines a strategy for developing bidirectional small-molecule allosteric modulators of protein kinases and other signaling proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Aurora Quinases/antagonistas & inibidores , Aurora Quinases/química , Aurora Quinases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células HEK293 , Humanos , Indazóis/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/química , Piruvato Desidrogenase Quinase de Transferência de Acetil
6.
Biochim Biophys Acta ; 1861(3): 249-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743850

RESUMO

Pkh is the yeast ortholog of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1). Pkh phosphorylates the activation loop of Ypks, Tpks, Sch9 and also phosphorylates the eisosome components Lsp1 and Pil1, which play fundamental roles upstream of diverse signaling pathways, including the cell wall integrity and sphingosine/long-chain base (LCB) signaling pathways. In S. cerevisiae, two isoforms, ScPkh1 and ScPkh2, are required for cell viability, while only one ortholog exists in C. albicans, CaPkh2. In spite of the extensive information gathered on the role of Pkh in the LCB signaling, the yeast Pkh kinases are not known to bind lipids and previous studies did not identify PH domains in Pkh sequences. We now describe that the C-terminal region of CaPkh2 is required for its intrinsic kinase activity. In addition, we found that the C-terminal region of CaPkh2 enables its interaction with structural and signaling lipids. Our results further show that phosphatidylserine, phosphatidic acid, phosphatidylinositol (3,4 and 4,5)-biphosphates, and phosphatidylinositol (3,4,5)-trisphosphate inhibit Pkh activity, whereas sulfatide binds with high affinity but does not affect the intrinsic activity of CaPkh2. Interestingly, we identified that its human ortholog PDK1 also binds to sulfatide. We propose a mechanism by which lipids and dihydrosphingosine regulate CaPkh2 kinase activity by modulating the interaction of the C-terminal region with the kinase domain, while sulfatide-like lipids support localization CaPkh2 mediated by a C-terminal PH domain, without affecting kinase intrinsic activity.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Sequência de Aminoácidos , Sítios de Ligação , Candida albicans/genética , Biologia Computacional , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Sulfoglicoesfingolipídeos/metabolismo , Transfecção
7.
Biochim Biophys Acta ; 1834(7): 1302-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23524293

RESUMO

The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Assuntos
Modelos Moleculares , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Regulação Alostérica , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/classificação
8.
Chem Biol ; 18(11): 1463-73, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118680

RESUMO

Protein kinases are key mediators of cellular signaling, and therefore, their activities are tightly controlled. AGC kinases are regulated by phosphorylation and by N- and C-terminal regions. Here, we studied the molecular mechanism of inhibition of atypical PKCζ and found that the inhibition by the N-terminal region cannot be explained by a simple pseudosubstrate inhibitory mechanism. Notably, we found that the C1 domain allosterically inhibits PKCζ activity and verified an allosteric communication between the PIF-pocket of atypical PKCs and the binding site of the C1 domain. Finally, we developed low-molecular-weight compounds that bind to the PIF-pocket and allosterically inhibit PKCζ activity. This work establishes a central role for the PIF-pocket on the regulation of PKCζ and allows us to envisage development of drugs targeting the PIF-pocket that can either activate or inhibit AGC kinases.


Assuntos
Proteína Quinase C/química , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Biocatálise , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA